Numerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method
نویسندگان
چکیده
منابع مشابه
Numerical Solution of One-dimensional Telegraph Equation using Cubic B-spline Collocation Method
In this paper, a collocation approach is employed for the solution of the one-dimensional telegraph equation based on cubic B-spline. The derived method leads to a tri-diagonal linear system. Computational efficiency of the method is confirmed through numerical examples whose results are in good agreement with theory. The obtained numerical results have been compared with the results obtained b...
متن کاملNumerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method
The present paper uses new approach and methodology to solve second order one dimensional hyperbolic telegraph equation numerically by B-spline collocation method. It is based on collocation of modified cubic B-spline basis functions over the finite elements. The given equation is decomposed into system of equations and modified cubic B-spline basis functions have been used for spatial variable...
متن کاملA Numerical Solution of One Dimensional Heat Equation Using Cubic B-spline Basis Functions
In this paper one dimensional heat equation is solved using Galerkin B-spline Finite Element. Solution is obtained by reducing the initial boundary value problem to the set of Ordinary differential equations. Discretization of the spatial domain is made using cubic B-spline functions as basis functions. The numerical results obtained from the two test problems are compared with the analytical s...
متن کاملCubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation
In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 ...
متن کاملNumerical solution of fractional partial differential equations using cubic B-spline wavelet collocation method
Physical processes with memory and hereditary properties can be best described by fractional differential equations based on the memory effect of fractional derivatives. For that reason reliable and efficient techniques for the solution of fractional differential equations are needed. Our aim is to generalize the wavelet collocation method to fractional partial differential equations using cubi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Interpolation and Approximation in Scientific Computing
سال: 2014
ISSN: 2194-3907
DOI: 10.5899/2014/jiasc-00042